Merestinib (LY2801653) inhibits neurotrophic receptor kinase (NTRK) and suppresses growth of NTRK fusion bearing tumors

نویسندگان

  • Bruce W. Konicek
  • Andrew R. Capen
  • Kelly M. Credille
  • Philip J. Ebert
  • Beverly L. Falcon
  • Gary L. Heady
  • Bharvin K.R. Patel
  • Victoria L. Peek
  • Jennifer R. Stephens
  • Julie A. Stewart
  • Stephanie L. Stout
  • David E. Timm
  • Suzane L. Um
  • Melinda D. Willard
  • Isabella H. Wulur
  • Yi Zeng
  • Yong Wang
  • Richard A. Walgren
  • Sau-Chi Betty Yan
چکیده

Merestinib is an oral multi-kinase inhibitor targeting a limited number of oncokinases including MET, AXL, RON and MKNK1/2. Here, we report that merestinib inhibits neurotrophic receptor tyrosine kinases NTRK1/2/3 which are oncogenic drivers in tumors bearing NTRK fusion resulting from chromosomal rearrangements. Merestinib is shown to be a type II NTRK1 kinase inhibitor as determined by x-ray crystallography. In KM-12 cells harboring TPM3-NTRK1 fusion, merestinib exhibits potent p-NTRK1 inhibition in vitro by western blot and elicits an anti-proliferative response in two- and three-dimensional growth. Merestinib treatment demonstrated profound tumor growth inhibition in in vivo cancer models harboring either a TPM3-NTRK1 or an ETV6-NTRK3 gene fusion. To recapitulate resistance observed from type I NTRK kinase inhibitors entrectinib and larotrectinib, we generated NIH-3T3 cells exogenously expressing TPM3-NTRK1 wild-type, or acquired mutations G595R and G667C in vitro and in vivo. Merestinib blocks tumor growth of both wild-type and mutant G667C TPM3-NTRK1 expressing NIH-3T3 cell-derived tumors. These preclinical data support the clinical evaluation of merestinib, a type II NTRK kinase inhibitor (NCT02920996), both in treatment naïve patients and in patients progressed on type I NTRK kinase inhibitors with acquired secondary G667C mutation in NTRK fusion bearing tumors.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

BAC-FISH assays delineate complex chromosomal rearrangements in a case of post-Chernobyl childhood thyroid cancer.

Structural chromosome aberrations are known hallmarks of many solid tumors. In the papillary form of thyroid cancer (PTC), for example, activation of the receptor tyrosine kinase (RTK) genes, RET and neurotrophic tyrosine kinase receptor type I (NTRK1) by intra- and interchromosomal rearrangements has been suggested as a cause of the disease. However, many phenotypically similar tumors do not c...

متن کامل

NTRK gene fusions as novel targets of cancer therapy across multiple tumour types

The tropomyosin receptor kinase (Trk) receptor family comprises 3 transmembrane proteins referred to as Trk A, B and C (TrkA, TrkB and TrkC) receptors that are encoded by the NTRK1, NTRK2 and NTRK3 genes, respectively. These receptor tyrosine kinases are expressed in human neuronal tissue and play an essential role in the physiology of development and function of the nervous system through acti...

متن کامل

The chimeric protein tyrosine kinase ETV6-NTRK3 requires both Ras-Erk1/2 and PI3-kinase-Akt signaling for fibroblast transformation.

There is increasing interest in the potential role of the NTRK family of neurotrophin receptors in human neoplasia. These receptor protein tyrosine kinases (PTKs) are well-known mediators of neuronal cell survival and differentiation, but altered NTRK signaling has also been implicated in mesenchymal, hematopoietic, and epithelial malignancies. We recently identified a novel gene fusion involvi...

متن کامل

Precision medicine becomes reality—tumor type-agnostic therapy

Precision medicine just witnessed two breakthroughs in oncology in 2017. Pembrolizumab (Keytruda), Merck’s antiprogrammed cell death-1 (PD-1) monoclonal antibody (mAb), received accelerated approval in May 2017 by the US Food and Drug Administration for the treatment of adult and pediatric patients with unresectable or metastatic solid tumors that have been identified as having microsatellite i...

متن کامل

Cellular transformation and activation of the phosphoinositide-3-kinase-Akt cascade by the ETV6-NTRK3 chimeric tyrosine kinase requires c-Src.

The ETV6-NTRK3 (EN) chimeric tyrosine kinase, a potent oncoprotein expressed in tumors derived from multiple cell lineages, functions as a constitutively active protein-tyrosine kinase. ETV6-NTRK expression leads to the constitutive activation of two major effector pathways of wild-type NTRK3, namely, the Ras-mitogen-activated protein kinase (MAPK) mitogenic pathway and the phosphoinositide-3-k...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2018